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Enantioselectivity in a nonconcerted asymmetric reaction is 
not necessarily determined by the initial enantiodifferentiating 
event but rather by the relative energies of the diastereomeric 
transition states in the first irreversible step. Examples of such 
Curtin-Hammett control have been demonstrated in Rh-catalyzed 
asymmetric hydrogenation reactions.4'5 A logical corollary to 
this principle specifies that events succeeding the first irreversible 
step should not influence the enantiomeric composition of the 
final product.6 

The concept that "the die is cast"6 in the first irreversible step 
of a multi-step reaction is indeed strictly true for stereospecific 
additions to olefins, which constitute the majority of known 
asymmetric catalytic alkene transformations.7 However, we note 
here that a significant exception arises for nonstereospecific 
asymmetric reactions, wherein the relative configuration of the 
product is not predicated by the mechanism of the reaction. Two 
such enantioselective processes have recently been uncovered in 
our laboratories, (salen)Mn-catalyzed epoxidation8 and (bisim-
ine)Cu-catalyzed aziridination.9 In both reactions, disubstituted 
acyclic cis alkenes are oxidized to afford mixtures of cis and trans 
disubstituted heterocycles with good-to-high enantioselectivity 
(eq 1). As illustrated below, the enantiomeric composition of the 
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L*M = (bisimine)CuOTf, X = NTs (Y = ArI) 

products can be profoundly influenced by events following the 
first irreversible step in these reactions.10 

Nonstereospecificity in (Scbiff base)metal-catalyzed epoxi-
dations and aziridinations of conjugated alkenes is well-prece-
dented and has generally been attributed to a stepwise mechanism 
involving a partially- or freely-rotating common radical inter
mediate (eq 2).11'12 If the mechanism in eq 2 is assumed and the 

(1) University of Illinois. Current address: Rohm & Haas, Spring House, 
PA. 

(2) University of Illinois. Current address: Cheil Foods and Chemicals, 
Kyonggi-Do, Korea. 

(3) Harvard University. 
(4) Landis, C. R.; Halpern, J. J. Am. Chem. Soc. 1987,109, 1746. 
(5) Other catalytic alkene addition mechanisms may also involve reversible 

addition of catalyst to the double bond prior to the selectivity-determining 
step, e.g.: (a) Sharpless, K. B.; Teranishi, A. Y.; Backvall, J.-E. J. Am. Chem. 
Soc. 1977,99,3120. (b) Sundermeyer, / . Angew. Chem., Int. Ed. Engl. 1993, 
32,1144. (c) G6bel, T.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1993, 
32, 1329. 

(6) Bosnich, B. In Asymmetric Catalysis; Bosnich, B., Ed.; Marinus 
Nijhoff: Boston, 1986; p 14. 

(7) E.g.: (a) Epoxidation: Johnson, R. A.; Sharpless, K. B. Comprehensive 
Organic Synthesis, Vol. 7; Pergamon: New York, 1991; Chapter 3.2. (b) 
Dihydroxylation: Crispino, G. A.; Ho, P. T.; Sharpless, K. B. Science 
(Washington, D.C.) 1993, 259, 64. (c) Hydrogenation, hydrosilation, and 
hydrocyanation: Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. 
Principles and Applications ofOrganotransition Metal Chemistry; University 
Science Books: Mill Valley, CA, 1987; Chapter 10. 

(8) Zhang, W.; Loebach, J. L.; Wilson, S. R.; Jacobsen, E. N. J. Am. 
Chem. Soc. 1990, 7/2, 2801. 

(9) Li, Z.; Conser, K. R.; Jacobsen, E. N. / . Am. Chem. Soc. 1993, 115, 
5326. See also: Evans, D. A.; Faul, M. M.; Bilodeau, M. T.; Anderson, B. 
A.; Barnes, D. M. J. Am. Chem. Soc. 1993,115, 5328. 

X 
Il 
M 

*ih 
V 

X 
I 
M 
A 

collapse FT R2 

—- v/ 
rotation/ R2 <Z) 
collapse / 

R1 X 
R = aryl, alkenyl, alkynyl; R2 = alkyl 

reactions leading to A were reversible, then cis-trans isomerization 
of alkene would be expected. However, for all substrates studied 
in our laboratories, olefin isomerization does not occur under 
conditions of asymmetric epoxidation or aziridination. Therefore, 
the first carbon-heteroatom bond-forming step is concluded to 
be irreversible and therefore turnover-limiting.13 

Nonconjugated olefins are oxidized stereospecifically by a 
concerted or nearly concerted mechanism,14 so it is reasonable 
to assume that generation of the radical intermediate A from 
conjugated alkenes occurs regiospecifically at the carbon bearing 
the conjugating group R1.15 On the basis of a simple analysis, 
it might be predicted that chiral catalysts functioning under such 
a mechanism should induce identical enantioselectivity in the cis 
and trans products, since the configuration at the carbon bearing 
R2 is established in this first irreversible step that leads to the 
common intermediate. However, as shown in Table 1, the 
experimentally observed enantiomeric excesses of cis and trans 
epoxides or aziridines can be very different.16 This apparent 
paradox may be attributed to the fact that with a chiral complex, 
the common intermediate is actually generated as a mixture of 
two diastereomers, Ai and A2 (Scheme 1). Each of these may 
partition to cis and trans products, but their diastereomeric 
relationship allows for the degree of partitioning to be different. 
As expressed in Scheme 1, this is the case if [fcmajorW [̂ major] trans 
^ lAminorJcis/ lAminorJtrans• 
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Table 1. Nonstereospecific, Enantioselective Oxidation of Cis Disubstituted Alkenes 
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" E, epoxidation; A, aziridination. * Calculated using eq 3. c Calculated according to eq 6. d Zhang, W. Ph.D. Thesis, Univerisity of Illinois, 1991. 
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There are accordingly two independent factors that influence 
enantioselectivity in these stepwise additions: the facial selectivity 
in the first step (eefaciai. determined by fcmajor vs &minor) ond the 
relative diastereoselectivities of ring closure ([fcmajor] cis/ fcmajor] trans 
vs [fcminor]c»/[*minor]trans)- Assuming that both cis and trans 
products arise solely from irreversibly-formed common inter
mediates Ai and A2 and that the products are epimeric at R2, the 
facial selectivity can be calculated by straightforward manipu
lation of the terms in Scheme 1 (eq 3):18 

ee facial ' 
A 1 - A 2 

A, + A2 
= (eeci8 X %cis) + (eetrans X %trans) (3) 

where eeCj, is the enantiomeric excess of cis product, and eemns 
is the enantiomeric excess of trans product. 

The diastereoselectivity of ring closure, defined as the cis/ 
trans partitioning of intermediates A and A2, can either be 
calculated (eqs 4 and 5)'8 or measured experimentally. The ratio 
of these diastereoselectivities (eq 6) provides a measure of the 
difference in cis/trans partitioning for the diastereomeric inter
mediates. 
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relative diastereoselectivity of ring closure = 
[cislmajo,/[transit = (1 + Oe8JZ(I -eec i 8) 

[cis]minor/[trans]minor (1 + eetran8)/(l - ee,r aJ 

As displayed in Table 1, significant divergence between the 
enantiomeric composition of the cis and trans products arises 
when the cis/trans partitioning (fccis/fctrans) ' s v e r v different for 
the major and the minor pathways. In the most extreme case 
examined thus far (entry 3), the diastereoselectivities of ring 
closure differ by a factor of 21. It is significant that, in most 
cases examined, the diastereoselectivity of cis/trans partitioning 
results in an enhancement in the enantiomeric excess of the major 

(18) Derivation of eqs 3-5 is provided as supplementary material. 
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product. More important, very high enantioselectivity for either 
the cis or the trans product can be attained despite modest facial 
selectivity (eefaciai) in the first step (entries 2,4, 6). This arises 
if the favored intermediate (Ai in Scheme 1) partitions selectively 
to the major diastereomer of the product, while the minor 
intermediate (A2) preferentially undergoes collapse to the minor 
diastereomer. 

In summary, ligand dissymmetry in a chiral catalyst can 
strongly influence the reactivity of irreversibly-formed interme
diates and effect a formal enantioselectivity refinement after the 
first irreversible step of a nonconcerted process. This constitutes 
a potentially controllable feature of asymmetric catalyst design, 
and our current efforts are directed toward elucidating the steric 
and electronic factors that influence the diastereoselectivity of 
ring closure in enantioselective atom- and group-transfer reactions. 
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